In meso structure of the cobalamin transporter, BtuB, at 1.95 A resolution.

نویسندگان

  • V Cherezov
  • E Yamashita
  • W Liu
  • M Zhalnina
  • W A Cramer
  • M Caffrey
چکیده

Crystals of the apo form of the vitamin B12 and colicin receptor, BtuB, that diffract to 1.95 A have been grown by the membrane-based in meso technique. The structure of the protein differs in several details from that of its counterpart grown by the more traditional, detergent-based (in surfo) method. Some of these differences include (i) the five N-terminal residues are resolved in meso, (ii) residues 57-62 in the hatch domain and residues 574-581 in loop 21-22 are disordered in meso and are ordered in surfo, (iii) residues 278-287 in loop 7-8 are resolved in meso, (iv) residues 324-331 in loop 9-10, 396-411 in loop 13-14, 442-458 in loop 15-16 and 526-541 in loop 19-20 have large differences in position between the two crystal forms, as have residues 86-96 in the hatch domain, and (v) the conformation of residues 6 and 7 in the Ton box (considered critical to signal transduction and substrate transport) are entirely different in the two structures. Importantly, the in meso orientation of residues 6 and 7 is similar to that of the vitamin B12-charged state. These data suggest that the "substrate-induced" 180 degrees -rotation of residues 6 and 7 reported in the literature may not be a unique signalling event. The extent to which these findings agree with structural, dynamic and functional insights gleaned from site-directed spin labelling and electron paramagnetic resonance measurements is evaluated. Packing in in meso grown crystals is dense and layered, consistent with the current model for crystallogenesis of membrane proteins in lipidic mesophases. Layered packing has been used to locate the transmembrane hydrophobic surface of the protein. Generally, this is consistent with tryptophan, tyrosine, lipid and CalphaB-factor distributions in the protein, and with predictions based on transfer free energy calculations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of calcium on the conformation of cobalamin transporter BtuB.

BtuB is a beta-barrel membrane protein that facilitates transport of cobalamin (vitamin B12) from the extracellular medium across the outer membrane of Escherichia coli. It is thought that binding of B12 to BtuB alters the conformation of its periplasm-exposed N-terminal residues (the TonB box), which enables subsequent binding of a TonB protein and leads to eventual uptake of B12 into the cyto...

متن کامل

Coupled changes in translation and transcription during cobalamin-dependent regulation of btuB expression in Escherichia coli.

The level of the vitamin B12 transport protein BtuB in the outer membrane of Escherichia coli is strongly reduced by growth in the presence of cobalamins. Previous analyses of regulatory mutants and of btuB-lacZ fusions indicated that the primary site of btuB gene regulation was at the translational level, and this required sequences throughout the 240-nucleotide (nt) leader region. Cobalamin-d...

متن کامل

Site-directed disulfide bonding reveals an interaction site between energy-coupling protein TonB and BtuB, the outer membrane cobalamin transporter.

Transport of vitamin B(12) across the outer membrane of Escherichia coli, like that of iron-siderophore complexes, is an active transport process requiring a specific outer membrane transporter BtuB, the proton motive force, and the trans-periplasmic energy coupling protein TonB. Interaction between TonB and two of the TonB-dependent siderophore transporters has been detected previously by form...

متن کامل

Conformational equilibrium, dynamics and oligomerization of membrane transporters under in situ conditions explored with EPR spectroscopy

Membrane proteins often excurse through a broad conformational landscape and a channel, transporter or receptor activity is often achieved through large-scale domain movements. Thus a mechanistic description of the function necessitates an understanding of the conformational changes and equilibrium dynamics. Electron Paramagnetic Resonance (EPR) spectroscopy is a potential tool for structural i...

متن کامل

Outer membrane active transport: structure of the BtuB:TonB complex.

In Gram-negative bacteria, the import of essential micronutrients across the outer membrane requires a transporter, an electrochemical gradient of protons across the inner membrane, and an inner membrane protein complex (ExbB, ExbD, TonB) that couples the proton-motive force to the outer membrane transporter. The inner membrane protein TonB binds directly to a conserved region, called the Ton-b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 364 4  شماره 

صفحات  -

تاریخ انتشار 2006